Chem. Ber. 109, 970-993 (1976)

Neue Übergangsmetallkomplexe mit Nuclein-Basen und Nucleosiden

Wolfgang Beck* und Nikolaus Kottmair

Institut für Anorganische Chemie der Universität München, D-8000 München 2, Meiserstr. 1

Eingegangen am 3. Juli 1975

Die Darstellung von Carbonylmetallkomplexen W(CO)₅L (1), $[W(CO)_5L]^-$ (2), $[Mo(CO)_3enL]^-$ (3), $(\pi$ -CH₃C₅H₄)Mn(CO)₂L (4), Rh(CO)₂(Cl)L (5), Ir(H)(CO)(PPh₃)₂L₂ (6), M(CO)(PPh₃)₂L (M = Rh, Ir) (7, 8) und von phosphin- und amin-haltigen monomeren sowie mehrkernigen Palladium(II)- und Platin(II)-Komplexen (9–14) mit einer Reihe von neutralen und anionischen Purinund Pyrimidin-Basen und Nucleosiden L wird beschrieben. Mit Hilfe von IR- und ¹H-NMR-Daten wird versucht, die Koordinationsstellen der ambidenten Nucleinbasen zu bestimmen. 1,3,7,9-Tetramethylxanthinium-perchlorat wird mit Quecksilber(II)-acetat am C-8 metalliert (15).

New Transition Metal Complexes with Nucleic Acid Bases and Nucleosides

The isolation of carbonylmetal complexes $W(CO)_5L$ (1), $[W(CO)_5L]^-$ (2), $[Mo(CO)_3enL]^-$ (3), $(\pi-CH_3C_5H_4)Mn(CO)_2L$ (4), $Rh(CO)_2(Cl)L$ (5), $Ir(H)(CO)(PPh_3)_2L_2$ (6), $M(CO)(PPh_3)_2L$ (M = Rh, Ir) (7, 8), and of phosphine and amine containing monomeric and polynuclear palladium(II) and platinum(II) complexes (9–14) with various neutral and anionic nucleic acid bases and nucleosides L is reported. Using i.r. and ¹H n.m.r. data a tentative assignment of the coordination sites of the ambidentate ligands is given. The reaction of 1,3,7,9-tetramethylxanthinium perchlorate with Hg^{II} acetate affords the C-8 mercurated complex 15.

Bis vor wenigen Jahren war das komplexchemische Verhalten der Purin- und Pyridinbasen nur sporadisch untersucht worden^{1, 2)}. Neue Impulse erhielt die Chemie der Metallkomplexe mit Nucleinbasen erst durch den Nachweis der biologischen Aktivität von Schwermetall-Anionen auf DNS³⁾ und durch die Entdeckung der cancerostatischen Wirkung von *cis*-Diaminplatin(II)-Verbindungen⁴⁾. Eine Reihe von Arbeitskreisen befaßt sich in neuerer Zeit mit der Isolierung^{3, 5-7)} und der spektroskopischen Charakterisierung

¹⁾ A. Kossel, Hoppe-Seyler's Z. Physiol. Chem. 12, 241 (1888).

²⁾ A. F. Schütz und B. Umschweif, Biochem. Z. 268, 326 (1934).

³⁾ G. L. Eichhorn, Inorganic Biochemistry, Vol. 2, Elsevier Publishing Co., Amsterdam 1973.

⁴⁾ B. Rosenberg, L. van Camp, J. E. Trosko und V. H. Mansour, Nature (London) 222, 385 (1969).

⁵⁾ R. Weiss und H. Venner, Monatsber. Dtsch. Akad. Wiss. Berlin 13, 199 (1971).

⁶⁾ M. J. Clarke und H. Taube, J. Amer. Chem. Soc. 97, 1397 (1975).

⁷⁾ P. C. Kong und Th. Theophanides, Inorg. Chem. 13, 1167 (1974).

von Purin- und Pyrimidinkomplexen (IR⁸⁾, RA^{9, 10)}, UV¹¹⁾ und NMR^{3, 12-15)}). Noch ist die Diskussion über das ambidente Verhalten dieser Heterocyclen in vollem Gang, und es liegen zu wenige Röntgenstrukturen¹⁶⁻²¹⁾ vor, um ein eindeutiges Bild über die Wechselwirkung von Übergangsmetallen mit den Bestandteilen der Nucleinsäuren zu entwerfen. Wir haben eine breit angelegte Untersuchung begonnen und dabei verschiedene "weiche" Metalle mit Purin- und Pyrimidinbasen umgesetzt, um aus definierten Verbindungen mit Hilfe von IR- und ¹H-NMR-spektroskopischen Daten Koordinationstendenzen zu erkennen.

Folgende Nucleinbasen und Nucleoside wurden als Neutral- und anionische Liganden eingesetzt:

								$\mathbf{R^{1}}$	R²		x
						Нур	oxa n thin	Н	Н		0
	- 1				-		Inosin	н	Ribos	e	0
	I-			ېر لر			Guanin	NH2	н		0
	3 7	>		HN-	\uparrow	C	Guanosin	NH ₂	Ribos	e	0
	v~Ņ	_		RI	Ţ∕_Ŋ	2', 3' - <i>O</i> - I s	opropy-	NH2	2', 3'-0	0-Isopropy-	0
	Ŕ	2			Ŕ²	liden	guano sin			lidenribose	
	R ¹	\mathbf{R}^2				6-Merca	ptopurin	н	н		s
Purin	Н	Н									
Adenin	NH_2	н									
Adenosin	NH2	Rit	ose								
J		N R ³	R ² N			HN X	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$				2
	1	R ¹	R ²	R ³			\mathbf{R}^{1}	R ²	x	Cytosin	L
Xant	hin I	H	Н	н		Uracil	н	Н	0		
Theophyl	lin	СН₃	Н	CH3		Uridin	Ribose	н	0		
Theobron	nin I	н	CH_3	СН₃		Thymin	н	CH_3	0		
	•				2-1	Chiou rac il	н	н	S		

- ⁸⁾ A. T. Tu und C. G. Friederich, Biochemistry 7, 4367 (1968).
- 9) S. Mansy und R. S. Tobias, J. Amer. Chem. Soc. 96, 6874 (1974).
- ¹⁰⁾ S. Mansy und R. S. Tobias, Inorg. Chem. 14, 287 (1975).
- ¹¹⁾ S. Mansy, B. Rosenberg und A. J. Thomson, J. Amer. Chem. Soc. 95, 1633 (1973); R. B. Simpson, ebenda 86, 2059 (1964).
- ¹²⁾ P. C. Kong und Th. Theophanides, Inorg. Chem. 13, 1981 (1974).
- ¹³⁾ L. S. Kan und N. C. Li, J. Amer. Chem. Soc. 92, 4823 (1970).
- ¹⁴⁾ G. Kotowycz, Can. J. Chem. 52, 924 (1974).
- ¹⁵⁾ J. A. Happe und M. Morales, J. Amer. Chem. Soc. 88, 2077 (1966).
- ¹⁶⁾ H. J. Krentzien, M. J. Clarke und H. Taube, Bioinorg. Chem. 4, 143 (1975).
- ¹⁷⁾ G. W. Hunt und E. L. Amma, J. Chem. Soc., Chem. Commun. 1973, 869.
- ¹⁸⁾ H. I. Heitner und St. J. Lippard, Inorg. Chem. 13, 815 (1974).
 ¹⁹⁾ E. Sletten, Acta Crystallogr., Sect. B 25, 1480 (1969); E. Sletten und M. Ruud, ebenda 31, 982 (1975). ²⁰⁾ Th. J. Kistenmacher und D. J. Szalda, Acta Crystallogr., Sect. B 31, 90 (1975). E. I. Philling und A. C. Skapski, Biochim. Biop
- ²¹⁾ D. M. L. Goodgame, I. Jeeves, F. L. Phillips und A. C. Skapski, Biochim. Biophys. Acta 378, 153 (1975).

Darstellung der Komplexe

Aus Hexacarbonylwolfram entstehen durch photochemische Substitution von CO durch Adenin, Adenosin, Purin und 2-Thiouracil die neutralen Pentacarbonylkomplexe 1a-d (Gl. 1) sowie die Pentacarbonylwolframate 2a-d mit den Anionen von Adenin, Purin, Theophyllin und Xanthin (Gl. 2). Ein NH-Proton in 1d läßt sich im alkalischen Medium abspalten unter Bildung des anionischen Komplexes [W(CO)₅(2-Thiouracilat)]⁻ 2e (Gl. 3). Durch Substitution von CO sind auch die Metallcarbonyl-Komplexe *cis*-[Mo(CO)₃enL]⁻ und (π -MeC₅H₄)Mn(CO)₂L (Gl. 4 und 5) zugänglich. Die anionischen Komplexe wurden als AsPh₄⁺ oder NÄt₄⁺-Salze isoliert. Unter Spaltung der Chloro-Brücken in [Rh(CO)₂Cl]₂ bildet sich mit "Isopropylidenguanosin" der monomere Komplex 5. Der Thio-Ligand 6-Mercaptopurin wird oxidativ an die "*Vaska*"-Verbindung Ir(CO)(PPh₃)₂Cl addiert (Gl. 7), während die Anionen der Nucleinbasen Chlorid in M(CO)(PPh₃)₂Cl (M = Ir, Rh) nucleophil verdrängen (Gl. 8). Die Verbindungen 8 bilden in Lösung und im festen Zustand Sauerstoffaddukte.

Die Umsetzung von Dichloro-Komplexen von Palladium(II) und Platin(II) mit den Anionen von Adenin, Guanin, Guanosin und Theophyllin führt zu den Bispurinato-Verbindungen 9 und 10 (Gl. 9, 10). Dimeres, chloroverbrücktes $[(n-Bu_3P)PdCl_2]_2$ liefert mit Adenin, Adeninat sowie mit Adenosin verschiedene mehrkernige Komplexe 11-14(s. weiter unten).

²²⁾ Anionen der Nucleinbasen = Nucleinbase minus H^+ .

$$[Rh(CO)_{2}Cl]_{2} \xrightarrow{+L} cis-Rh(CO)_{2}(Cl)L$$
(6)

$$5: L = 2', 3'-O-Isopropylidenguanosin$$

$$trans-Ir(CO)(PPh_{3})_{2}Cl \xrightarrow{+2LH, -HCl} Ir(H)(CO)(PPh_{3})_{2}L_{2}$$
(7)

$$6: L = 6-Mercaptopurinat^{22}$$

trans-M(CO)(PPh₃)₂Cl
$$\xrightarrow{+L, -Cl^-}$$
 M(CO)(PPh₃)₂L (8)
7: M = Rh
8: M = lr

		L		L
7a,	8a	Adeninat ²²⁾	7h, 8h	Purinat
b,	b	Cytosinat	i,	Theobrominat
c,	c	Guaninat	j, j	Theophyllinat
d,	d	Guanosinat	k, k	2-Thiouracilat
	e	Hypoxanthinat	l, l	Thyminat
f,	f	Inosinat	m, m	Uracilat
g,	g	6-Mercaptopurinat ²³⁾	n, n	Uridinat
		I	0, 0	Xanthinat

Diskussion

Die ambidenten Basen können einzähnig koordinieren, Chelatringe bilden¹⁸⁾ oder als Brückenliganden¹⁹⁾ auftreten; aufgrund der hier gewählten Komplextypen lassen sich jedoch bestimmte Koordinationsmöglichkeiten von vornherein ausschließen. Der Strukturtyp (ohne Berücksichtigung der Metall-Heterocyclen-Bindung) der Metallcarbonylverbindungen 1-8 ergibt sich eindeutig aus der Lage und Anzahl der charakteristischen v(M)CO-Banden (Tab. 1-2).

²³⁾ 8g ist ein isomerer Hydrido-Komplex, vgl. S. 983.

Verbindung	A_1^{a}	Ε	A ₁	Lösungsmittel
la	2072 s	1925 sst	1890 m	CHCl ₃
b	2075 s	1933 sst	1890 m	CHCl ₃
c	2073 s	1930 sst	1895 m	CHCl3
d	2075 s	1940 sst	1900 m	CHCl ₃
2a ^{b)}	2060 s	1925 sst	1880 m	ÄtOH
b ^{b)}	2064 s	1932 sst	1884 m	CHCl ₃
c ^{b)}	2065 s	1925 sst	1 880 m	ÄtOH
d ^{b)}	2066 s	1932 sst	1883 m	ÄtOH
e ^{b)}	2065 s	1922 sst	1870 m	CHCl ₃
3 a °)	1882 st	1735 sst		DMSO
þ ^{c)}	1885 st	1733 sst		KBr
c ^{d)}	1884 st	1743 sst		DMSO
4a	1895 st	1825 st		KBr
Ь	1910 st	1832 st		KBr
5	2088 st	2016 st		CHCl ₃

Tab. 1. v(M)CO-Banden (cm⁻¹) der Carbonylmetallverbindungen 1-5

a) s = schwach, m = mittel, st = stark, sst = sehr stark, b = breit.

^{b)} Als Na-Salz.

c) Als AsPh₄-Salz.

d) Als NÄt₄-Salz.

Tab. 2. v(M)CO-Absorptionen (cm⁻¹) der Carbonylmetallverbindungen 6-8 (in CHCl₃)

Verb	v(M)CO	Verb.	v(M)CO	Verb.	v(M)CO
6 ^{a)}	2180 s ^{b)} , 2055	7j	1987	8e	1975
7a	1990	k	1983	f	1974
b	1981	1	1983	g	2155 s ^{b)} , 2047
c	1976	m	1985	ĥ	1980
d	1985	n	1975	j	1 975
f	1985	0	1989	k	2055, 2034
g	1988	8a	1 978	1	1967
h	1 992	b	1968	m	1971
i	1973	с	1962	n	1965
		d	1974	0	1977

^{a)} In KBr.

^{b)} v(Ir - H).

Aminopurin-Komplexe

Bei Aminopurinen werden die Ring-N-Atome als Donoren bevorzugt^{3, 24)}. So sind bei den Adeninato-Komplexen 8a und 10a die vNH_2 -Banden in verdünnter CHCl₃-Lösung gegenüber freiem 9-Methyladenin nicht verschoben (Tab. 3). In konzentrierten Lösungen ist die Verschiebung nach kleineren Wellenzahlen und das Auftreten mehrerer vNH_2 -Absorptionen auf intermolekulare Wasserstoff-Brückenbindungen²⁵⁾ und nicht

²⁴⁾ Vgl. z. B. M. Sundaralingam und J. A. Carrabine, J. Mol. Biol. 61, 304 (1971).

²⁵⁾ Y. Kyogoku, R. C. Lord und A. Rich, J. Amer. Chem. Soc. 89, 496 (1967).

auf eine Koordination über die Aminogruppe zurückzuführen. Eine konzentrationsabhängige Assoziation von 8a in CHCl₃ läßt sich auch durch osmometrische Mol.-Massebestimmung nachweisen (Tab. 6).

	<0.01 м	>0.01 м
8a	3520, 3410	3490, 3410, 3347
10a	3518, 3410	3483, 3410, 3345, 3250, 3205
9-Methyladenin ²⁵⁾	3527, 3416	3485, 3312, 3250, 3200, 2884, 2800

Tab. 3. vNH₂-Banden (cm⁻¹) von 8a, 10a und 9-Methyladenin

Komplexe mit Anionen von Oxopurinen

Bei Oxopurinato-Komplexen können im Doppelbindungsbereich des IR-Spektrums zwei Phänomene beobachtet werden: In den Spektren der komplexgebundenen Purinbasen-Anionen Guaninat, Hypoxanthinat und Xanthinat zeigt sich eine charakteristische

Abb. IR-Spektren von Guanin, K-Guaninat, Guanosin, K-Guanosinat, 8c und 10c im Doppelbindungsbereich (in KBr)

Liganden
complexgebundenen
reien und l
m ^{- 1}) der f
IR-Absorptionen (ci
4. Charakteristische 1
ab. 4

Verbindung		
Adenin	3295 m, 3115 m (vNH ₂) ^{4, b)} ; [3000 – 2500] m (vNH) ^{4, b)} ; 1670st (δNH ₂) ^{b)} ; 1602st	KBr
9-Äthvladenin	3527. 3416 (vNH,)°4: 1629 (δNH,)°4: 1586 (vRing) ⁶⁾	CHCI
K-Adeninat	3435 st, 3350 st (vNH ₂) ^A); 1637 st (6NH ₂) ^A); 1610m (vRing)	KBr
la	3450s, 3330m, 3180m, 3140m (vNH ₂); [3000 – 2700]s (vNH); 1660sh, 1648st (δNH ₂); 1610m (vRing)	KBr
	3515s, 3445s, 3410s (vNH ₂); 1640st (δNH ₂)	CHCI
2 a ^{B)}	3450m, 3380m (vNH ₂); 1640sh (δNH ₂); 1620st (vRing)	KBr
Зв	3480sh, 3420s, 3280s, 3245m (vNH ₂); 1637m (δNH ₂); 1615m (vRing)	KBr
4a	3520sh, 3480sh, 3410m, 3330sh, 3110 s (vNH ₂); 1625 b, st (δNH ₂ + vRing)	KBr
7а	3465 m, 3390s, 3280 m, 3230s, 3110s (vNH ₂); 1633st (δNH ₂); 1620sh, 1588st (vRing)	KBr
	3515sh, 3468s, 3410s (vNH ₂); 1623b,st (δNH ₂)	CHCI
Sa Sa	3510 b, m, 3450 b, m, 3320 b, m, 3150 b, m (vNH ₂); 1624 st (δNH ₂); 1590 m (vRing)	KBr
	3520s, 3410s (vNH ₂); 1622st (6NH ₂); 1590 m (vRing)	CHCI
10a	3490 m, 3420 m, 3300 m, 3130 m (vNH ₂); 1655 h; 1638 st (δNH ₂) ^{A)} , 1588 st (vRing); 1548 m	KBr
	3518s, 3490sh, 3410s (vNH ₂); 1620st (6NH ₂); 1585 m (vRing); 1555 m	CHCI
11	3475s, 3393s, 3300m, 3243s, 3163s (vNH ₂); 1632st (δNH ₂); 1585st (vRing); 1564 m	KBr
	3470 m, 3305 m, 3248 s, 3197 s (vNH ₂); 1635 st (δNH ₂); 1585 st (v Ring); 1568 m	CHCI
12	3475sh, 3325m, 3170m (vNH ₂); 1637st (δNH ₂); 1596st (vRing); 1560m	KBr
	3523s, 3410s (v NH ₂); 1640sh; 1630st; 1596m (v Ring); 1563 m	CHCI
13	3315b,m,3130m (vNH ₂); 1625st (δNH ₂); 1587st (vRing), 1550m	KBr
Adenosin	3330b, m. 3160b, m (vNH-) ⁴⁰ ; 1665st (δNH-) ⁴⁰ ; 1602st (vRing) ⁴⁰ ; 1572 m	KBr
A denosin ^{C)}	3530 (v NH_): 3415 (v NH_) ⁽ⁱ⁾ : 1625 (SNH_ + vRine) ⁽ⁱ⁾	CCI.
1b	3420h st 3160h st 1640st (VNH A: 1577m)	KBr
44	3400 st : 3330 st : 3200 sh : 3120 st : 1635 st (8 NH.): 1578 m	KBr
14	3385 b,st; 3260sh; 3200sh; 1640 (6 NH_2); 1588 m	KBr
Cvtosin	3385 m (vNH,)*); 3170 m (v.NH,)*); 2795. 2690 b, m (v.NH)*); 1660 b, st (v 2CO)*)	KBr
1-Me-Cytosin	3510, 3408 (vNH,) ^{b)}	CHCI
K-Cytosinat	3420m, 3400sh, 3310m, 3180m (vNH ₂) ⁴); 1630m (δNH ₂) ⁴); 1592st; 1549st	KBr
7 b _	3455b,m, 3310b,m; 3200b,m; 3130b,m; 1645sh; 1630st (vCO); 1590st; 1550st; 1545st (hzw. 1565m: 1535eh)	KBr
	34525, 34125, 3300 bs/vNH-); 1660 sh: 1626 h st (vCO); 1615 h st	CHCI
8b	3470 b, m, 3385 b, m, 3310 b, m, 3190 b, m, 3140 b, m (v NH ₂); 1648 sh; 1650 sh; 1625 st (vCO); 1595 st;	KBr
	1570m, 1558m	
	3480s, 3416s, 3315b,s (vNH ₂); 1685sh; 1660sh; 1635sh; 1616st	CHCI

_
-
~ 2 ′
3
- 53
÷
6
-
5
, o
يتعا
\sim
4
ف
2
н

Verbindung		
Guanin	3320 m (v_{ss} NH ₂) ¹⁰ ; 3110 m (v_{s} NH ₂) ¹³ ; 2900, 2690 m (vNH) ¹³ ; 1690 st (v \sum CO) ¹³ ; 1670 st (δ NH ₂) ¹³ ; 1635 m : 1560 m	KBr
K-Guaninat 7c	3470m, 3438 m, 3348 m, 3300m, 3200 m (vNH ₂) [∧]); 1624 m (δNH ₂) [∧]); 1573 st, 1573 st 3420sh, 3290 m, 3130 m (vNH ₂); 1660st (v≥CO); 1635 sh (δNH ₂); 1610 m; 1542 m	KBr KBr
8c	3440sh, 3280m, 3135 m (vNH ₂); 1663st (v>CO); 1635 sh (õNH ₂); 1615 m; 1545 m 1663 st (v>CO): 1650sh (õNH,): 1616 m	KBr CHCI,
10b .	3460m, 3310m, 3160m (VNH2); 1685st (v>CO); 1625st (δNH2); 1600m; 1550s; 1525m	KBr
Guanosin	3430b,m, 3330b,m, 3205 b,m (vNH ₂ , vOH); 2885 b,m, 2720 b,m (vNH); 1726 m; 1685 st (v~CO) ^m ; 1630st (6NH ₂) ^{d1} ; 1602 m	KBr
2',3',5'-Tri-O-acetyl-	3510, 3408 (v ŇH ₂) ⁿ⁾	CHCI ₃
K-Guanosinat	3440b,m, 3345b,m, 3100b,m (vNH2, vOH) ^{A)} ; 1630sh; 1587b, st (vRing) ^{k1} ; 1565b, st 52600 - 20001k - m9///OH1 - 2011 - 2012, 15052	KBr V Pr
. D/	[3600 – 3000] b, m ^{D)} (YOH, YNH,); 1635sh; 1623 st; 1585 st	CHCI,
8d	[3600 – 3000] b, m ^D (vOH, vNH ₂); 1636sh; 1620b,st; 1585 st; 1565 st [3600 – 3000] b, m ^D (vOH, vNH ₂)· 1676 b st	KBr CHCI
10c 2',3'-O-Isopropyliden-	3300, m, 3310b, m, 3190b, m, 3120b, m (vNH ₂ , vOH) ^{Ab} ; 1630sh (δNH ₂) ^{Ab} ; 1600st; 1570m 3440s, 3400s, 3300b, m, 3165b, m, 2730b, m (vNH ₂ , vNH, vOH) ^{Ab} ; 1726b, st; 1692st (v>CO) ^{ab} ; 1634st	KBr Hostaflon
guanosin 5	(0.M12) ^{™1, 1.2} 008. 3420b,sh, 3330b,m, 3210b,m, 3130b,m, 2750b,sh (v.NH2, v.NH, v.OH) ^{A1} ; 1690b,st (v.>CO); 1630b,st (δ.NH2) ^{A1} ; 1585 b,st	KBr
Hypoxanthin K-Hypoxanthinat 8e	3255 s; 3130 m; 3050 m; [3000 – 2500] ^{Eb} , st (v NH); 1668 st (v≻CO) ¹ ; 1579 m 3050 m; [3000 – 2800] ^{D1} b, m; 1670 m ^{E1} ; 1595 st [3000 – 2800] s ^{E1} ; 1670 st (v≻CO); 1620 sh; 1583 m	KBr KBr KBr
Inosin K-Inosinat 7f	3545s; 3380sh; 3310m; 3140m; 3115m; 1702st, 1690st (v≻CO) ^{m)} ; 1592m 3130b,m; 1613st (vRing) ^m ; 1596st 3370b,m; 3230b,m; 1620st (vRing)	KBr KBr KBr
8f	3200b, m; 1623 b, st (v Ring) [3450–3150] ^{D1} b, m; 1630 b, st (v Ring) 3250h m· 1630h st (v Ring)	CHCI, KBr CHCI,
6-Mercapto-	$3430 \text{ m} (\text{vOH})^{A1}$; 3095 m , $3050 \text{ s} (\text{vCH})^{A1}$; $[3000 - 2600] \text{ m}^{\text{E1}} (\text{vNH})^{A.11}$; 1613 st ; 1575 m ; 1529 m	KBr
purn - 1120 6-Mercapto- 7- methylpurin	3365 (v NH) ¹⁾	CHCl ₃

(B
unz
Set
ori
L
b. 4
Tal

Verbindung		
K-6-Mercapto-	[3230 m – 2800 m] ^{E3} (vCH, vNH); 1590 sh; 1583 st; 1548 m; 1537 m	KBr
6 7 g 8 g	[3000 – 2500] ^{IE1} b, m; 1630sh; 1613st; 1585s; 1550sh; 1539 m [3000 – 2500] s; 1635sh; 1600st; 1545sh 3350 bs (vNHJ; 1640sh; 1610 b, st 1602st; 1548 m	KBr KBr CHCl ₃ KBr
Purin K-Purinat 1c 8h	[3100 - 3000] m (vCH) ⁿ ; [3000 - 2500] m ^E , (vNH) ⁿ ; 1618 st, 1570 m (vRing) ⁿ 3088 s, 3050 s(vCH) ^o ; 1595 s, 1552 m (vRing) ^o [3150 - 2500] m (vCH, vNH); 1620 st, 1610 st, 1587 st (vRing) 1587 st, 1548 m (vRing) 1587 st, 1550 s (vRing)	KBR KBR KBBR KBBR KBBR KBBR KBBR KBBR K
1,3,7,9-Tetramethyl- xanthiniumperchlorat	3090 m (vC ⁸ -H) ^{G1} ; 1718st, 1670st (vCH); 1631sh; 1610sh; 1583 m; 1545 m 1710st 1668 (v⊃CO)- 1635sh- 1540st	KBr KBr
Theobromin Na-Theobrominat 71	1150m; 3105m; 3025m (vNH)™; 2820m (vNH); 1685 b,st, 1665 sh (v ×CO)™ 3150m; 3085 s; 1620 b,st 1632 st; 1615 st 1635 st; 1622 st	KBr KBr KBr CHCl ₃
Theophyllin Na-Theophyl- linat · H . O	3120 m, 2905 s, 2840 s, 2710 s, 2670 s (vNH ^q), vCH); 1715 st, 1665 st (v ≻CO) ^{q)} 3400 m, 3220 m (vOH); 1680 st, 1665 st, 1630 st (v ≻CO)	KBr KBr
2c 3c	1690st, 1680sh, 1638st (v_CO) 3355s; 3310m; 3280s; 3170s; [3000–2850]s ^{E)} ; 1670sh; 1625sh; 1610st 1681st 1634st (v_CO)	KBr KBr DMSO
7j 8 9 a 9 c 10 d	1682st, 1632st (v.>CO) 1682st, 1632st (v.>CO) 1685st, 1640st (v.>CO) 1693st, 1640st (v.>CO) 1693st, 1638st (v.>CO) 3235s; 3170m; 3070s; 1700st, 1635b,st (v.>CO)	K K K K K K K K K K K K K K K K K K K

Verbindung		
2-Thiouracil	3190s, 3130m, 3080m, 3045m, 2920m (vCH, vNH)''; 1705st, 1681st (v≻CO)''; 1625m; 1561b,st 3404, 3385sh (vNH)*	KBr CHCl ₃
K-2-Thiouracilat	3150s; 3060s; 2980m; 2920s; 1675st (v>CO); 1630b,st; 1544m; 1515st 3320m_3130m_3050m, 2910s (vNH); 1680st (v>CO); 1618m; 1548st	KBr KBr
2e	1690sh; 1661 m (v>CO); 1647 m; 1631 st; 1540 m 3333 s(vNH); 1692sh; 1660st (v>CO); 1634 m	KBr CHCI
7.k	1600sh; 1660sh (v>CO); 1655st; 1612st; 1599 sh; 1585sh; 1572sh 3380s (vNH); 1683 m, 1659 m (v>CO); 1638; 1607 st	KBr CHCl
8 k	1675 m (v>CO); 1585 st 3370s: 1676m. 1657 m (v>CO); 1601 st	KBr CHCI3
Thymin	3200m, 3060m (vNH)*); 2810m; 1730st, 1675st (v>CO) ⁴⁾ 3431. 3395 (vNH)* ¹	KBr CHCI,
K-Thyminat 71	3235 s; 3110 s; 1645 sh; 1631 st; 1620 st 1660 sh: 1635 h, st: 1575 st	KBr KBr
•	3430s, 3400s (VNH); 1650m (v>CO); 1625st	CHC13
81	3410 b, s; 1668 m (v>CO); 1640 st; 1580 m 3443 s, 3400s (vNH); 1656 sh; 1633 st; 1580 m	KBr CHCI
Uracil	3125 sh; 3160 sh, 3110m (vNH) ^{ai} , [3000 – 2800] m (vNH) ^{ai} ; 1732 b, st, 1712 b, st (v>C ² O) ⁴ ; 1665 b, st, 1639 b, st (vC ⁴ O + vC ⁴ C ⁵) ¹⁰ 2020 (ATTVB) 2020 (ATTVB)	KBr
K-Uracilat	3432 (VNH) ⁻⁷ ; 3594 (VNH) ^{-4,} 3090 m, 2940 m, 2780s (VNH) ^{Ab} ; 1630 b, st; 1546 m	KBr KBr
7m	3435s; 3200m; 2780s; 1638st; 1635st; 1615sh; 1565st 3545s, 3400m (vNH); 1669st (v>CO); 1633st; 1570s-m	KBr CHCI
8 д	3410 b, m; 1670 st; 1640 st; 1582 m; 1569 sh 3435 sh, 3400 m (vNH); 1664 st (v>CO); 1642 st; 1603 sh; 1585 sh	KBr CHCl,
Uridin 2',3',5'-Tri-O-acetyl- uridin	3350m; 3110s; 2965s; 2915s; 2800s; 1697st, 1680st, 1665st (v>CO)") 3489 (vNH) ¹¹⁾	KBr CHCI,

Tab. 4 (Fortsetzung)

÷

Verbindung		
K-Uridinat 7n 8n	[3500–3000] b, m ^{D)} (vOH); 1634 b, st, 1513 b, st (v>CO) 3400 b, m; 1636 st, 1555 st, 1545 st (v>CO) 3330 b, m; 1637 st, 1556 st, 1546 sh (v>CO) 3400 b, m; 1638 st, 1550 sh (v>CO) 3350 bs; 1640 st, 1565 st, 1547 m (v>CO)	KBr KBr CHCl ₃ CHCl ₃
Xanthin K-Xanthinat 2d 70 80	[3200 – 2700] ^{PD} b, m (v NH); 1700 st, 1660 sh (v > CO); 1569 m 3140 m; 2980 s; 2860 s; 1686 sh; 1640 st; 1615 st; 1585 st 3200 s; 3056 s; 2860; 1690 b, st (v > CO); 1650 sh; 1610 sh; 1550 m 3140 s; 2850 s; 1695 sh; 1680 st; 1650 st; 1550 m 3410 s (v NH); 1695 sh, 1680 st; 1650 st; 1550 m 3140 s; 2850 s; 1700 sh; 1680 st; 1650 sh; 1550 m 340 s s; 1700 sh; 1686 st (v > CO); 1565 s	KBr KBr KBr CHCJ CHCJ CHCJ
^{A)} Durch Deuterieren der = strukturiert. – ^{E)} Mchrere B ³⁾ J. P. Le Rolland und R. Fre ^{a)} C. L. Angell, J. Chem. Soc. ²⁾ Naturforsch, Teil B 21, 20. <i>P. Pithova</i> , Can. J. Chem. 44, <i>Oleinik</i> , Russ. Chem. Rev. 41, Biophys. Acta 247, 507 (1971) (1971). – ^{a)} D. Cook und Z. J. (1971). – ^{a)} D. Cook und Z. J. Zh. Obshch. Khim. 38, 1601 (und J. S. Ard, Spectrochim. A	WH bzw. NH ₂ - oder OH-Gruppe zugeordnet. $-^{B}$ Als Na-Salz. $-^{C}$ 2, 3'-Isopropyliden-5'-O-trityl-ade anden. $-^{P}$ Bande vermutlich auf Hydrolyse des K-Salzes zurückzuführen. $-^{O}$ Durch Bromierung ve <i>ymam</i> , C. R. Acad. Sci., Ser. C 276 , 727 (1973). $-^{B}$) A. Lautié und A. Novak, J. Chim. Phys. 71, 415 (1974) 1961 , 504. $-^{O}$ T. Shimanouchi, M. Tsuboi und Y. Kyogoku, Adv. Chem. Phys. 7, 435 (1964). $-^{D}$ E. Küchl 9 (1966). $-^{B}$ H. Susi, J. S. Ard und J. M. Purcell, Spectrochim. Acta. Part A 29 , 725 (1973). $-^{D}$) J. Pit 1045 (1966). $-^{B}$ H. Susi, J. S. Ard und J. M. Purvell, Spectrochim. Acta. Part A 29 , 725 (1973). $-^{D}$, J. Fit 1045 (1972). $-^{E}$ s. Litt ²⁵⁰). $-^{D}$ D. J. Brown und S. F. Mason, J. Chem. Soc. 1957 , 682. $-^{m}$) A. Psoda und L 258 (1972). $-^{E}$ s. Litt ²⁵⁰). $-^{D}$ D. J. Brown und S. F. Mason, J. Chem. Soc. 1957 , 682. $-^{m}$) A. Psoda und L $-^{m}$ A. Lautië und A. Novak, I. Chim. Phys. 65 , 1359 (1968). $-^{9}$ A. Lautié und A. Novak, C. R. Acad. Sci. Secon. J. Chem. 45 , 2899 (1967). $-^{9}$ A. T. Tu und J. A. Reinosa, Biochemistry 5, 3375 (1966). $-^{1050}$ [C. A. 69 , 81952m (1968)]. $-^{9}$ J. Find and G. J. Thomas Jr, Spectrochim. Acta, Part A 23 , 2551 (1956). $-^{10}$ R. J. Jeta und G. J. Thomas Jr, Spectrochim. Acta, Part A 23 , 2551 (1956). $-^{10}$ R. C. Lord und G. J. Thomas Jr, Spectrochim. Acta, Part A 23 , 2551 (1956). $-^{10}$ R. P. Lord und G. J. Thomas Jr, Spectrochim. Acta, Part A 23 , 2551 (1956). $-^{10}$ R. Part	anosim. $-$ ^{D)} Wenig on C-8 zugeordnet. 4). $-^{0}$ s. Lit. ²⁵⁾ . $-$ let und J. Derkosch, ha, R. N. Jones und Zhizhina und E. F. D. Shugar, Biochim Sci, Ser. B 273, 908 Sci, Ser. B 273, 908 (1965). $-^{0}$ H. Sua 967).

Tab. 4 (Fortsetzung)

v > C = O-Bande, während man für die koordinierten Nucleosid-Anionen Guanosinat und Inosinat keine charakteristische Ketobande oberhalb der Lage der Ringschwingungen²⁶⁾ findet (Tab. 4). Diese Beobachtungen sollen am Beispiel des Guanins und Guanosins (Abb.) näher interpretiert werden.

Da die Ketobande im koordinierten Guaninat bei höheren Wellenzahlen als im freien Anion auftritt, kann hier eine Koordination über den Sauerstoff ausgeschlossen werden. Nicht entscheiden läßt sich aus dem IR-Spektrum, welches Ring-N-Atom koordiniert ist. Die C⁶-O-Gruppe kann sowohl durch Bindung über N¹ oder N³ als auch durch Koordination über N⁷ – unter Protonenwanderung von N⁹ nach N¹ – einen (im Vergleich zum freien Anion) höheren Doppelbindungscharakter erhalten (Strukturen A-C):

Im komplexgebundenen Guanosinat liegt eine Bindung über N¹ nicht vor, da in diesem Fall eine charakteristische Ketobande auftreten sollte. Die Bande bei 1630 cm⁻¹ in 10c ist der δNH_2 -Schwingung zuzuordnen. Die Koordination über N⁷ erklärt die "Aufrichtung" der C⁶-O-Doppelbindung im koordinierten Guanosinat (**D**).

Aus dem ¹H-NMR-Spektrum von 5 läßt sich entnehmen, daß neutrales Isopropylidenguanosin über N⁷ an das Rhodiumatom gebunden ist (E). Die chemische Verschiebung für 8-H übertrifft die Tieffeldverschiebung des NH₂-Signals (Tab. 5). Die größere Verschiebung für N¹-H ist auf die durch Koordination erhöhte Acidität des Liganden zurückzuführen. Eine Rh-O-Koordination kann aufgrund der hohen Lage der Ketobande (Tab. 4) ausgeschlossen werden.

Theophyllinat ist in einem Kobalt(III)-Komplex über N⁷ gebunden²⁰⁾. Eine Koordination über die Imidazol-N-Atome ist auch in 7j, 8j, 9a-c und 10d anzunehmen. Eine Metall-Sauerstoff-Bindung würde die Kopplung zwischen den Ketogruppen im Theophyllinat verhindern²⁷⁾; diese Entkopplung ist jedoch im IR-Spektrum (Tab. 4) nicht festzustellen.

²⁶⁾ H. T. Miles, F. B. Howard und J. Frazier, Science 142, 1458 (1963).

²⁷⁾ E. Schier Dissertation, Univ. München 1972; W. Beck und E. Schier, Z. Naturforsch., Teil B 25, 221 (1970).

Komplexe mit Anionen von Oxopyrimidinen

Das Auftreten einer intensiven Absorption bei 1630 bzw. 1625 cm^{-1} in 7b und 8b, die vermutlich vC=O-Charakter besitzt, läßt für Cytosinat auf Koordination über die Ring-N-Atome schließen (Tab. 4). Eine solche Bindung ist auch für koordiniertes Thyminat und Uracilat in 7l, 8l, 7m und 8m anzunehmen, da diese die Ketobanden im Vergleich zu den freien Kaliumsalzen bei größeren Wellenzahlen zeigen (Tab. 4). Die wechselnde Intensität der Absorption bei ca. 1550 cm^{-1} in den Pyrimidinato-Komplexen kann eine Isomerie zwischen N¹-M und N³-M andeuten.

In den IR-Spektren der Komplexe 7n und 8n ordnen wir die Absorptionen bei 1640 bis 1545 cm⁻¹ (Tab. 4) den C²-O- und C⁴-O-Schwingungen des koordinierten Uridinats zu. Diese Zuordnung wird gestützt durch den Vergleich mit zahlreichen Carbonyl-Komplexen von cyclischen Imiden 2^{7} :

$$(OC)_{n}M-N$$

 C
 R = z,B. $[CH_{2}]_{2}$, $[CH_{2}]_{3}$, $C_{6}H_{4}$

Wie in diesen Imido-Komplexen wird für 7n und 8n eine – im Vergleich zum freien Anion – kleinere Frequenzdifferenz der beiden Ketoabsorptionen festgestellt (Tab. 4). Diese Befunde deuten somit auf Koordination von Uridinat über N³ hin. Auch in Methylquecksilber-Uridinat-Verbindungen liegt nach Ra-Differenz-spektroskopischen Untersuchungen von *Tobias* et al.²⁸⁾ eine N³-Metall-Bindung vor.

Thio-Komplexe

2-Thiouracil kann einzähnig über das Schwefelatom koordinieren. So wird in 1 d wegen der Ähnlichkeit der Ligandenschwingungen mit (2-Thiouracil)₂CuCl eine Metall-Schwefelbindung angenommen. In letzterem Komplex ist die Cu-S-Bindung röntgenographisch gesichert ¹⁷).

Auch in 7k erfolgt die Bindung von 2-Thiouracilat an das Rhodium über Schwefel, da die vNH- und vC=O-Banden im IR-Spektrum auftreten (Tab. 4). Neutrales 2-Thiouracil addiert sich oxidativ an Ir(CO)(PPh₃)₂Cl; das Addukt konnte nur IR-spektroskopisch nachgewiesen werden; es zeigt wie andere Thioiridium(III)-Komplexe des Typs Ir(H)(Cl)(SR)(CO)(PPh₃)₂²⁹⁾ die vIr – H- (2180 cm⁻¹) und die v(Ir)CO-Bande (2040 cm⁻¹) bei ähnlichen Wellenzahlen.

6-Mercaptopurinat tritt in 7g (Gl. 8) als monoanionischer einzähniger Ligand auf. Die Umsetzung von Ir(CO)(PPh₃)₂Cl mit dem Monokaliumsalz des 6-Mercaptopurins führt dagegen zum isomeren Hydrido-Komplex 8g, der das Dianion des 6-Mercapto-

S. Mansy, Th. E. Wood, J. C. Sprowles und R. S. Tobias, J. Amer. Chem. Soc. 96, 1762 (1974).
 T. Gaines und D. M. Roundhill, Inorg. Chem. 13, 2521 (1974).

purins enthält. Wir nehmen an, daß dabei zunächst Chlorid durch 6-Mercaptopurinat substituiert wird und anschließend Wasserstoffwanderung vom Stickstoff zum Metall erfolgt (intramolekulare oxidative Addition). 8g ist auch aus 6 durch Behandeln mit Kaliumhydroxid zugänglich.

Das bei der Reaktion von $Ir(CO)(PPh_3)_2Cl$ mit 6-Mercaptopurin auftretende HCl (Gl. 7) addiert sich an die "*Vaska*"-Verbindung unter Bildung von $Ir(H)(CO)(PPh_3)_2Cl_2$.

Die Chelatstruktur von 8g ergibt sich aus der Mol.-Massebestimmung und der hohen Lage der v(Ir)CO-Bande bei 2047 cm⁻¹, die charakteristisch für die Koordinationszahl 6 am Iridium ist (Tab. 2); eine N-H-Bande wird in 8g nicht beobachtet. Ein N⁷-C⁵-C⁶-S-Chelatring wurde mit Palladium(II) röntgenographisch nachgewiesen ¹⁸). Für 8g sind verschiedene geometrische Isomere möglich.

Adeninat-verbrückte Palladium(II)-Komplexe

Bei der Umsetzung von $[Bu_3PPdCl_2]_2$ mit Adeninat oder Adenin werden verschiedene Komplexe 11 – 13 erhalten. Mit überschüssigem Kaliumadeninat entsteht 13, das vermutlich dimer gebaut ist, während sich 12 mit einem Verhältnis Adeninat/Pd²⁺ = 1:1 bildet. Neutrales Adenin reagiert zu 11 unter Abspaltung von HCl, das als Adenin-hydrochlorid gebunden wird.

Die vorgeschlagenen Strukturen für 11 und 12 ergeben sich aus der Reaktion von 12 mit $[n-Bu_3PPdCl_2]_2$ zu 11, wobei die endständigen Adeninat-Liganden in Adeninat-Brücken übergeführt werden. Die chemischen Verschiebungen der Adeninat-Protonen in 12 stimmen mit denen der monomeren Komplexe 2a und 10a überein (Tab. 5).

In 11 sind die Adeninat-Protonensignale im Vergleich zu 12 nach tieferem Feld verschoben (Tab. 5). Solche Tieffeldverschiebungen wurden auch bei anderen aminopurinverbrückten Komplexen von Platin(II) beobachtet¹²⁾. Die Reaktion von Adenosin mit [n-Bu₃PPdCl₂]₂ führt zum Komplex 14 mit Nucleosidbrücke. Die vermuteten Koordinationsstellen sind N⁷ und N¹, da dadurch günstige intramolekulare Wasserstoffbrücken zu den Chlorliganden gebildet werden können. Auch in 14 sind die 2-H-, 8-H- und NH₂-¹H-Signale nach tieferem Feld verschoben (Tab. 5).

Eine quecksilber-organische Verbindung mit 1,3,7,9-Tetramethylxanthinium-Ligand

1,3-Diarylimidazolium-Salze setzen sich mit Quecksilber(II) zu Imidazolinyliden-Komplexen um³⁰⁾. Entsprechend wird im 1,3,7,9-Tetramethylxanthinium-perchlorat mit Quecksilberacetat das C-Atom 8 mercuriert:

Diese Umsetzung läßt sich am Verschwinden des 8-H-Signals bei 555 Hz (60 MHz) im NMR-Spektrum verfolgen. Die Ketobanden in 15 sind im Vergleich zum Xanthinium-Kation nur wenig verschoben (Tab. 4). Vor kurzem wurde ein ähnlicher Ruthenium-Coffein-Komplex mit carbenoider C^8 -Ru-Bindung beschrieben und durch Röntgenstrukturanalyse gesichert^{6,16)}. Eine weitere quecksilberorganische Nucleotid-Verbindung ist mit Uridin-5'-phosphat bekannt³¹⁾; sie wurde kürzlich Ra-spektroskopisch untersucht¹⁰⁾.

Versuche, einen Pentacarbonylchrom-Carben-Komplex aus 1,3,7,9-Tetramethylxanthinium-perchlorat nach *Öfele*³²⁾ zu erhalten, führten zu einer Verbindung noch unbekannter Struktur.

Die Verbindungen 9b, c, 10b und $(n-Bu_3P)_2Pt(Adeninat)_2$ wurden vom National Cancer Institute, Maryland, USA, im Tierversuch (BDF₁-Mäuse) gegen Leukämie L-1210 getestet; sie zeigten keine Aktivität.

³⁰⁾ H. J. Schönherr und H. W. Wanzlick, Chem. Ber. 103, 1037 (1970).

³¹⁾ R. M. K. Dale, D. C. Livingston und D. C. Ward, Proc. Nat. Acad. Sci. U.S.A. 70, 2238 (1973).

³²⁾ K. Öfele, J. Organomet. Chem. 12, P42 (1968).

	1 ab. J.	H-NMK-C	nemische Ve	rschiebung	cn (in Hz)	m [D6] U		Mo als interne	SIII Standard
Verbindung	H-1	2-H	H-8	NH2	H-,I	1-CH3	3-CH ₃	3-/9-CH ₃	Zuordnung nach
Adenin		491ª)	· 496ª)	432					W. R. Walker, J. M. Guo und N. C.
K-Adeninat		470	451						F. J. Bullock und O. Jardetzky; I. O. Cham. 20, 1000 (1064)
1a		532 ^{*)}	509=)						J. Org. Chem. 29, 1908 (1904)
2a		490 ^{ª)}	452 ^{ª)}	400					
10a		491 ª)	459ª)	399					
11		509 ^{a)}	478ª)	462					
12		494")	455")	416.					
Adenosin		494	505	443	358				S. M. Wang und N. C. Li, J. Amer.
14		502 ª)	523ª)	462	360				CIRCIII: 000: 20, 2000 (1200)
Guanosin	648		480	392	347				S. Shimokawa, H. Fukui, J. Sohma
V Guandiant			458		346				und A. Hotta, J. Amer. Chem. Soc. 95, 1777 (1973)
			NTA ATA	101	348				
2',3'-O-Isopropyliden- guanosin	649		479	394	360				
5 ^{b)}	670		504	4 04	364				
Theophyllin			478			194	206		D. Lichtenberg, F. Bergmann und Z. Neiman, J. Chem. Soc. C 1971.
K-Theophyllinat			427			187	200		1676
2c			444			193	204		
3c			448						
9a			432			193	196		
1,3,7,9-Tetramethylxan- thiniumperchlorat			555			192	221	240, 246	
15			I			196	228	454	
*) Zuordnung zu 2- oder ^{b)} Bezogen auf DMSO (E	8-H nicht MSO = 2	gesichert. 2.5 ppm, rel	ativ zu TMS	á					

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie sind wir für die Förderung unserer Arbeit zu großem Dank verpflichtet. Herrn Prof. R. S. Tobias danken wir für die Überlassung von unveröffentlichten Manuskripten, den Herren cand. chem. G. Lang, F. Philipp und W. Plarre für experimentelle Mitarbeit.

Experimenteller Teil

Die Umsetzungen mit Metallcarbonylen wurden in Stickstoffatmosphäre und in frisch destillierten, N₂-gesättigten Lösungsmitteln durchgeführt.

Die Kalium- (bzw. Natriumsalze) der Nucleinbasen wurden durch stöchiometrische Umsetzung mit KOH (bzw. NaOH) in Wasser dargestellt. Kaliumadeninat läßt sich aus DMSO umkristallisieren. Bei den im folgenden beschriebenen Reaktionen werden die Nucleinbasen und Nucleoside unter Erwärmen in den angegebenen Lösungsmitteln gelöst.

Die Nucleinbasen, Nucleoside, π -CH₃C₅H₄Mn(CO)₃, Kieselgel 40 [0.2-0.5 mm (35-70 mesh ASTM)] und Cellulose für die Säulenchromatographie wurden von der Fa. Merck, Isopropylidenguanosin von der Fa. Aldrich und W(CO)₆ von der Pressure Chemical Company bezogen.

IR-Spektren: Perkin-Elmer-Gitterspektrophotometer Modell 326. – ¹H-NMR-Spektren: Varian A-60-Gerät.

Die Ausbeuten wurden nicht optimiert. Für die Carbonylkomplexe sind keine definierten Schmpp. bzw. Zers.-P. zu beobachten. Der Zersetzungsbereich für die Wolfram- und Manganverbindungen liegt um 100°C, die der "*Vaska"*-Verbindungen 7 und 8 bei 150-200°C.

(Adenin) pentacarbonylwolfram(0) (1a): 1.05 g (3 mmol) W(CO)₆ werden in 100 ml THF bis zur Abspaltung von 3 mmol CO mit einem Hg-Hochdruckbrenner TQ 150 (Fa. Heraeus, Hanau) nach bekannten Methoden³³⁾ bestrahlt. Zu der gelben Reaktionslösung von W(CO)₅THF wird eine Lösung von 540 mg (4 mmol) Adenin in 30 ml Äthylenglycol-monomethyläther gegeben, 2 h bei Raumtemp. gerührt und anschließend das Lösungsmittel i. Vak. zunächst bei 20 °C, dann bei 60°C vollständig entfernt. Der Rückstand wird mit THF aufgenommen, das Filtrat weitgehend eingeengt und der gelbe Komplex mit Pentan gefällt (Rohausb. 30 %). Das Rohprodukt wird in wenig DMSO gelöst; nach mehreren Tagen scheiden sich aus der konzentrierten Lösung gelbe Kristalle von 1a ab.

(Adenosin) pentacarbonylwolfram(0) (1b): 2.67 g (10 mmol) Adenosin werden in 60 ml Äthylenglycol-monomethyläther zusammen mit 1.76 g (5 mmol) W(CO)₆ in 150 ml THF bestrahlt. Nach der Abspaltung von 5 mmol CO wird das Lösungsmittel i. Vak. zunächst bei 20°C, dann bei 60°C zur Trockne eingeengt und der gelbbraune Rückstand mit THF aufgenommen. Das Filtrat wird über eine Säule mit Kieselgel geschickt. Die Lösung wird weitgehend eingeengt und mit Pentan versetzt. Nun frittet man den gelben Niederschlag ab und trocknet ihn 8 h bei Raumtemp. i. Hochvak. Das Lösungsmittel kann jedoch nur unvollständig entfernt werden. Ausb. 20%.

Pentacarbonyl(purin)wolfram(0) (1 c): 1.05 g (3 mmol) W(CO)₆ werden in 100 ml THF bis zur Abspaltung von 3 mmol CO bestrahlt. Nun wird eine Lösung von 400 mg (3.3 mmol) Purin in 20 ml Äthylenglycol-monomethyläther zugegeben und 1½ h bei Raumtemp, gerührt. Anschließend zieht man das Lösungsmittel i. Vak. bei 20°C, dann bei 60°C vollständig ab und extrahiert den Rückstand mit viel Äther. Der Extrakt wird etwas eingeengt und mit Pentan versetzt. Der gelborange-farbene Komplex fällt dabei als Öl aus. Man dekantiert das überstehende Lösungsmittel und fällt nochmals aus Äther/Pentan um. Der Niederschlag wird 8 h bei Raumtemp. i. Hochvak. getrocknet; Ausb. 20-30%.

³³⁾ W. Strohmeier, K. Gerlach und D. v. Hobe, Chem. Ber. 94, 164 (1961).

	Tab. 6. AI	nalysen der Komplexe 1 -	- 15	
Verbindung	Summenformel	MolMasse ^{a)} Ber. Gef.	Analyse C H N	ZersP.
1a	WC ₁₀ H ₅ N ₅ O ₅ · 1.25 DMSO	459.0	Ber. 26.90 2.26 12.58 Gef. 27.59 2.49 12.51	
1Þ	WC ₁₅ H ₁₃ N ₅ O ₉ · 0.3 THF	591.2	Ber. 31.75 2.53 11.43 Gef. 32.34 3.23 11.63	
1c	WC10H4N4O5 · 0.34 Ät2O	444.0	Ber. 29.08 1.60 11.94 Gef. 28.79 2.79 12.16	
1d	WC,H4N2O6S · 0.17 Ät2O	452.1 454 ^{b)}	Ber. 25.05 1.20 6.03 Gef. 25.08 1.26 6.04	
2я	[C ₂₄ H ₂₀ As]WC ₁₀ H₄N₅O₅	840.7 796 ^{b)}	Ber. 48.54 2.87 8.30 Gef. (46.01) 2.85 8.17	
2c	[C ₂₄ H ₂₀ As]WC ₁₂ H ₇ N ₄ O ₇	885.8	Ber. 48.78 3.07 6.32 Gef. 48.21 3.38 5.87	
Зв	[C ₂₄ H ₂₀ As]MoC ₁₄ H ₁₂ N ₇ O ₃ · 2H ₂ O	756.9	Ber. 51.50 4.57 12.36 Gef. 51.55 4.69 12.17	170°C
3b	[C ₂₄ H ₂₀ As]MoC ₁₀ H ₁₂ N ₇ O ₄ · 2H ₂ O	772.9	Ber. 50.48 4.48 12.12 Gef. 49.40 4.00 12.11	165°C
3с	[C24H20As]MoC12H15N6O5 · H2O	801.9	Ber. 52.72 4.55 10.25 Gef. 52.83 4.73 10.15	165°C (ab 130°C rot)
4a	MnC ₁₃ H ₁₂ N ₅ O ₂	325.2	Ber. 48.01 3.72 21.54 Gef. (46.49) 3.88 21.78	140°C
4 b	MnC ₁₈ H ₂₀ N ₅ O ₆ · 0.67 THF	457.3	Ber. 49.12 5.05 13.86 Gef. 48.01 5.06 13.52	90°C
N)	RhC ₁₅ ClH ₁₇ N ₅ O ₇ .0.75 THF	517.6	Ber. 37.80 4.05 12.24 Gef. 37.55 4.81 12.26	
Q	lrC₄7H37N8OP2S2 · THF	1084.2	Ber. 52.98 3.92 9.66 Gef. 52.34 4.03 9.67	200°C
7a	RhC ₄₂ H ₃₄ N;OP ₂	789.6 855 ^{e)}	Ber. 63.88 4.34 8.87 Gef. 63.56 4.93 8.51	
7b	RhC41H34N3O2P2 · 2H2O	765.6	Ber. 61.43 4.78 5.24 Gef. 61.88 4.54 5.09	

	C H N S	Ber. 62.62 4.25 8.69 Gef. 63.05 4.55 8.36	Ber. 59.06 4.64 7.32 Gef. 59.27 5.02 7.21	Ber. 60.00 4.60 5.95 Gef. 59.73 4.39 5.55	Ber. 61.17 4.03 6.79 Gef. 59.60 4.52 5.75	Ber. 65.10 4.30 7.23 Gef. (62.92) 4.72 6.96	Ber. 59.30 4.87 5.88 5.05 Gef. 59.85 5.06 5.60 4.79	Ber. 62.32 4.47 6.71 Gef. 62.49 4.57 6.77	Ber. 62.92 4.25 3.57 4.0 Gef. 62.67 4.93 3.35 4.24	Ber. 61.54 4.81 3.26 Gef. 62.00 5.09 3.22	Ber. 64.25 4.34 3.65 Gef. 64.85 4.52 3.46	Ber. 62.54 4.12 6.95 Gef. (61.62) 4.19 6.62	Ber. 57.40 3.90 7.97 Gef. 57.56 3.89 7.99	Ber. 55.83 4.22 4.76 Gef. 55.92 4.06 4.43	Ber. 56.37 3.88 7.83 Gef. 55.83 3.67 7.59	Ber. 53.55 4.30 6.64 Gef. 53.69 4.29 6.07
(Fortsetzung)	MolMasse ^{")} Ber. Gef.	805.6	937.8	922.7	824.7 782 °)	774.6 860 ^{c)}	834.7	834.7 876 ^{d)}	782.6 786 ^{c)}	780.6	766.5 745 ° ⁰	806.6	878.9 925 °. ♥); 1015 °. ⁽¹⁾	854.9	894.9	1027.1
Tab. 6	Summenformel	RhC42H34N,02P2	RhC47H42N5O6P2 · H2O	$RhC_{47}H_{41}N_{4}O_{6}P_{2}\cdot H_{2}O_{6}$	RhC42H33N4OP2S	RhC ₄₂ H ₃₃ N ₄ OP ₂	RhC44H37N4O3P2 · 1.5 DMSO	RhC44H37N4O3P2	RhC41H33N2O2P2S	RhC ₄₂ H ₃₅ N ₂ O ₃ P ₂ · DMSO	$RhC_{41}H_{33}N_2O_3P_2$	RhC42H33N4O3P2	IrC42H34N5OP2	IrC41H34N3O2P2+1.5H2O	IrC42H34N5O2P2	IrC47H42N5O6P2 1.5 H2O
	Vcrbindung	7c	7d	7£	79	7.h	71	Ţ	7 k	71	7 m	70	88	86	8c	8d

	-	2		
Verbindung	Summenformel	MolMasse ^{a)} Ber. Gef.	Analyse C H N	S
8f	IrC47H41N406P2	1012.0	Ber. 55.78 4.08 5.5 Gef. 55.69 4.26 5.3	54 32
89	IrC42H33N4OP2S · 0.5 H2O	914.0 909 ^{ci)}	Ber. 54.65 3.74 6.0 Gef. 54.77 3.94 5.99	07 99
8h	IrC42H33N4OP2	863.9 890 ^{d)}	Ber. 58.39 3.85 6.49 Gef. (56.76) 3.21 6.14	48 14
8j	IrC44H ₃₇ N4O3P2	923.9 927 ^{d)}	Ber. 57.20 4.04 6.0 Gef. 57.30 4.06 5.7	06 71
8k	IrC41H33N2O2P2S	871.9 840°)	Ber. 56.46 3.80 3.2 Gef. 56.59 4.40 3.3	21 3.67 31 3.71
81	IrC42H35N2O3P2	869.9 855 °)	Ber. 57.99 4.06 3.2 Gef. (56.38) 4.33 3.19	22 19
8 m	IrC41H33N2O3P2	855.9 820°)	Ber. 57.54 3.88 3.2 Gef. 57.61 4.65 3.3	27 36
8n	IrC46H41N2O7P2 · 2H2O	988.0	Ber. 53.96 4.42 2.7 Gef. 54.09 4.34 2.6	73 61
80	IrC ₄₂ H ₃₃ N ₄ O ₃ P ₂	895.9	Ber. 56.30 3.71 6.2 Gef. 55.62 3.67 6.02	25 05

Tab. 6 (Fortsetzung)

Verbindung	Summenformel	MolMasse ^{a)} Ber. Gef.	Analyse C H N Pd Cl	ZersP.
9a	PtC33H65N5O4P2 · 0.5 H2O	958.0	Ber. 47.19 7.19 11.58 Gef. 47.04 7.44 11.34	170°C
9 b	$PtC_{40}H_{38}N_{8}O_{4}P_{2}$	951.8	Ber. 50.47 4.02 11.77 Gef. 48.88 4.07 11.00	210°C
9c	PtC ₁₆ H ₂₂ N ₁₀ O ₄	613.5	Ber. 31.32 3.61 22.83 Gef. 32.07 3.52 22.51	300°C
10a	PdC ₃₄ H ₆₂ N ₁₀ P ₂	779.2	Ber. 52.40 8.02 17.97 Gef. 51.43 8.15 17.90	225°C
10b	PdC ₃₄ H ₆₂ N ₁₀ O ₂ P ₂	811.2	Ber. 50.34 7.70 17.27 Gef. 49.02 6.49 16.69	275°C
10c	PdC44H78N10O10P2	1075.5	Ber. 49.13 7.31 13.02 Gef. 49.05 7.33 12.51	175°C
10 d	PdC38H68N8O4P2 · 0.5 H2O	869.3	Ber. 51.96 7.92 12.75 Gef. 51.96 7.93 12.50	175°C
11	Pd4C58Cl6H116N10P4	1715.8 1619 ^{d)}	Ber. 40.60 6.81 8.16 24.80 12.40 Gef. 40.76 6.94 8.01 24.82 12.42	190 – 192°C (Schmp.)
12	Pd2C34Cl2H62N10P2	956.5 958 ^{c)}	Ber. 42.69 6.53 14.64 22.24 7.41 Gef. 42.35 6.79 14.73 21.15 7.52	285°C
13	PdC ₂₂ H ₃₅ N ₁₀ P ^{#)}	576.9	Ber. 45.80 6.11 24.28 Gef. 44.97 7.05 23.19	253°C
14	Pd2C34Cl4H67N5O4P2	1026.5 1065 °)	Ber. 39.78 6.58 6.82 20.73 13.81 Gef. 39.36 6.37 6.52 19.25 12.94	70°C
15	HgC18Cl2H24N6O12	816.0	Ber. 26.49 2.96 13.77 Gef. 26.37 3.51 13.66	>300°C

Tab. 6 (Fortsetzung)

⁴⁾ Mol.-Masse ohne Lösungsmittel.
 ^{b)} Osmometrisch in Aceton.
 ^{c)} Osmometrisch in CHCl₃.
 ^{d)} Osmometrisch in Benzol.

e) 7.2 mg/ml. f) 15 mg/ml. b) Vermutlich dimer.

Pentacarbonyl(2-thiouracil)wolfram(0) (1d): 704 mg (2 mmol) W(CO)₆ werden 45 min bis zur Abspaltung von 2 mmol CO bestrahlt und anschließend mit einer Lösung von 512 mg (4 mmol) 2-Thiouracil in 150 ml THF bei Raumtemp. gerührt. Nach 2 h wird das Lösungsmittel i. Vak. vollständig entfernt und der Rückstand mehrmals mit viel Äther extrahiert. Die ätherische Lösung wird über eine Säule mit Cellulose geschickt und die Lösung bis zur beginnenden Trübung eingeengt. Nach 2d bei -20° C wird der gelbe Niederschlag 8h bei Raumtemp. i. Hochvak. getrocknet. Ausb. 20%.

Tetraphenylarsonium-adeninato(bzw. purinato, theophyllinato und xanthinato)pentacarbonylwolframat(0) (2a-d): 1.05 g (3 mmol) W(CO)₆ in 100 ml THF werden nach der photochemischen Abspaltung von 3 mmol CO mit 4 mmol Natriumadeninat (bzw. -purinat, -theophyllinat, -xanthinat³⁴) in 40 ml Methanol 2 h bei Raumtemp. gerührt. Nun wird zur Trockne eingeengt, der Rückstand mit Wasser aufgenommen und die wäßr. Lösung mit 1.25 g (3 mmol) Tetraphenylarsonium-chlorid versetzt. Es fällt ein gelber, klebriger Niederschlag aus, der abzentrifugiert und mehrmals mit Wasser nachgewaschen wird. Nach Umfällen aus Methylenchlorid/Diäthyläther werden die Verbindungen 8 h bei Raumtemp. i. Hochvak. getrocknet. Ausb. 20%.

Tetraphenylarsonium-pentacarbonyl(2-thiouracilato)wolframat(0) (2e): Die Verbindung fällt bei Zusatz von Tetraphenylarsonium-chlorid zu einer alkalischen Lösung von 1d als gelber, klebriger Niederschlag aus. Das Produkt wird abzentrifugiert, mit Wasser gewaschen und 8 h bei Raumtemp. i. Hochvak. getrocknet.

Tetraphenylarsonium-(adeninato)(äthylendiamin)tricarbonylmolybdat(0) (3a), Tetraphenylarsonium-(äthylendiamin)tricarbonyl(guaninato)- und (theophyllinato)molybdat(0) (3b, c): 268 mg (1 mmol) Mo(CO)₄en³⁵⁾ und 3 mmol Kaliumadeninat (bzw. -guaninat und -theophyllinat) werden in 20 ml Äthylenglycol-monomethyläther auf 110°C erhitzt. Nach 1 h wird das Lösungsmittel i. Vak. abdestilliert, der Rückstand mit 5 ml Wasser aufgenommen und abfiltriert. Nun versetzt man das Filtrat mit 418 mg (1 mmol) Tetraphenylarsonium-chlorid. Der gelbe Niederschlag wird nach Waschen mit Wasser 8 h i. Hochvak. getrocknet. Ausb. 30%.

(Adenin)- und (Adenosin)dicarbonyl(π -methylcyclopentadienyl)mangan(0) (4a, b): 676 mg (5 mmol) Adenin (bzw. 1.34 g, 5 mmol, Adenosin) werden in 80 ml (30 ml) Äthylenglycol-monomethyläther zusammen mit 0.3 ml (2 mmol) π -CH₃C₅H₄Mn(CO)₃ in 120 ml THF bestrahlt. Nach Abspaltung von 2 mmol CO wird das Lösungsmittel i. Vak. vollständig abgezogen, der Rückstand mit THF aufgenommen und filtriert. Das Filtrat wird teilweise eingeengt und mit Pentan versetzt, wobei nach kurzer Zeit das gelborange-farbene Produkt ausfällt, das nochmals aus THF/ Pentan umgefällt wird. Beim Trocknen i. Hochvak. (8 h) läßt sich das Lösungsmittel nur unvollständig entfernen. Ausb. 20 %.

Dicarbonylchloro(2',3'-O-isopropylidenguanosin)rhodium(1) (5): Eine Lösung von 130 mg (0.3 mmol) [RhCl(CO)₂]₂³⁶⁾ und 323 mg (1 mmol) 2',3'-O-Isopropylidenguanosin in 70 ml Methanol wird 12 h bei Raumtemp. gerührt; anschließend wird das Lösungsmittel i. Vak. abgezogen. Der Rückstand wird in 4 ml THF aufgenommen und das klare Filtrat mit Pentan versetzt. Es fällt sofort ein gelber Niederschlag aus, der 8 h bei 20°C i. Hochvak. getrocknet wird. Ausb. 55 %.

Carbonylhydridobis(6-mercaptopurinato)bis(triphenylphosphin)iridium(111) (6): 255 mg (1.5 mmol) 6-Mercaptopurin und 600 mg (0.77 mmol) IrClCO(PPh₃)₂³⁷ werden in 120 ml THF

³⁴⁾ P. Balke, J. Prakt. Chem. 47, 537 (1893).

³⁵⁾ C. S. Kraihanzel und F. A. Cotton, Inorg. Chem. 2, 533 (1963).

³⁶⁾ J. A. Mc Cleverty und G. Wilkinson, Inorg. Synth. 8, 211 (1966).

³⁷⁾ J. P. Collman, C. T. Sears und M. Kubota, Inorg. Synth. 11, 101 (1968).

gelöst. Nach 12 h ist ein schwach-gelber Niederschlag, der neben 6 auch $IrHCl_2CO(PPh_3)_2$ enthält, ausgefallen. Nach Einengen des Filtrats fällt bei $-20^{\circ}C$ ein weiterer Niederschlag von 6 aus, der mit THF gewaschen und 8 h i. Hochvak. getrocknet wird. Rohausb. $40-45^{\circ}$ %.

Carbonylhydrido(6-mercaptopurinato)bis(triphenylphosphin)iridium(III) (8g): 6 wird in verd., wäßr. Kalilauge aufgenommen und 2 h bei Raumtemp. gerührt. Nun filtriert man ab, wäscht den gelben Rückstand mit Wasser und trocknet 1 d i. Hochvak., Ausb. 90%.

Komplexe des Typs $M(CO)(PPh_3)_2L$ (7 **a**-0, 8**a**-0): 3 mmol der Nucleinbase bzw. des Nucleosids und 3 mmol Kaliumhydroxid in 10 ml Wasser werden mit einer Lösung von 0.5 mmol IrCl(CO)(PPh_3)_2 bzw. RhCl(CO)(PPh_3)_2 in 40 ml THF vereinigt. Man rührt 2 d bei Raumtemp. und zieht anschließend (20°C) nur das THF i. Vak. ab. Aus der wäßr. Phase fällt ein gelber Niederschlag, der mehrmals mit Wasser gewaschen und 1 d bei Raumtemp. i. Hochvak. getrocknet wird. Ausb. 70-80%.

7i und l können aus DMSO umkristallisiert werden.

Die Iridiumverbindungen addieren in Lösung und in festem Zustand Sauerstoff. Die O₂-Addukte zeigen eine vCO-Bande bei 2020 cm⁻¹ (fest in KBr). Die Chloroformlösung von 7i zersetzt sich nach längerem Stehenlassen unter Abspaltung des Theobrominatoliganden.

Bis(theophyllinato)bis(tributylphosphin)platin(II) (9a): 450 mg (2.5 mmol) Theophyllin und 140 mg (2.5 mmol) Kaliumhydroxid in 60 ml Methanol werden mit 500 mg (0.75 mmol) cis-(P-n-Bu₃)₂PtCl₂³⁸) versetzt. Nun rührt man 24 h bei Raumtemp., zieht das Lösungsmittel i. Vak. ab und wäscht den farblosen Rückstand mehrmals mit Wasser. Ausb. 60%.

[1,2-Bis(diphenylphosphino)äthan]bis(theophyllinato)platin(11) (9b): 900 mg (5 mmol) Theophyllin und 280 mg (5 mmol) Kaliumhydroxid in 150 ml Methanol werden mit 332 mg (0.5 mmol) Dichloro[1,2-bis(diphenylphosphino)äthan]platin(11)³⁹⁾ in 20 ml Methylenchlorid 5 d gerührt. Das Lösungsmittel wird i. Vak. vollständig abgezogen, der farblose Rückstand mehrmals mit Wasser gewaschen und 8 h i. Hochvak. getrocknet. Ausb. 60 %.

 $(\ddot{A}$ thylendiamin)bis(theophyllinato)platin(II) (9c): 160 mg (0.5 mmol) PtenCl₂⁴⁰⁾, 900 mg (5 mmol) Theophyllin und 280 mg (5 mmol) Kaliumhydroxid werden in 100 ml Wasser 7 d bei Raumtemp. gerührt. Der farblose Niederschlag wird mehrmals mit Wasser gewaschen und 8 h i. Hochvak. getrocknet. Ausb. 50%.

Bis(adeninato bzw. guaninato bzw. guanosinato)bis(tributylphosphin)palladium(II) (10a - c) und Bis(theophyllinato)bis(tributylphosphin)palladium(II) (10d): Die Lösungen von 5 mmol Ligand in 5 ml 1 N KOH und 290 mg (0.5 mmol) trans-(P-n-Bu₃)₂PdCl₂⁴¹) in 25 ml Äthanol werden zusammen 1-2 d bei Raumtemp. gerührt. Anschließend wird auf 8 ml eingeengt und der farblose Niederschlag nach Waschen mit Wasser 8 h i. Hochvak. getrocknet. Ausb. 60-70 %. 10a läßt sich aus heißem Äthanol umkristallisieren; die farblosen Kristalle zerfallen beim Trocknen i. Hochvak. Molare Leitfähigkeit von 10a in CHCl₃: $0.7 \times 10^{-3} \Omega^{-1} \text{ cm}^2\text{mol}^{-1}$.

Bis(adeninato)hexachlorotetrakis(tributylphosphin)tetrapalladium(II) (11)

a) 760 mg (1 mmol) [P-n-Bu₃PdCl₂]₂⁴²⁾ und 270 mg (2 mmol) Adenin werden in 30 ml Äthylenglycol-monomethyläther 24 h gerührt. Anschließend wird das Lösungsmittel bei 50°C i. Vak. vollständig entfernt und der Rückstand mit 15 ml THF aufgenommen. Das Filtrat wird auf 3 ml

³⁸⁾ G. B. Kauffman und L. A. Teter, Inorg. Synth. 7, 245 (1963).

³⁹⁾ A. D. Westland, J. Chem. Soc. 1965, 3060.

⁴⁰⁾ G. W. Watt und D. G. Upchurch, J. Amer. Chem. Soc. 90, 914 (1968).

⁴¹⁾ F. G. Mann und D. Purdie, J. Chem. Soc. 1935, 1549.

⁴²⁾ F. R. Hartley, Organomet. Chem. Rev., Sect. A 6, 119 (1970).

eingeengt und mit 1 ml Pentan überschichtet. Nach 4 d scheiden sich bei -20° C gelbe Kristalle ab, die mit wenig Pentan gewaschen werden. Ausb. 18%. Die Ausbeute kann durch vollständiges Einengen der Mutterlauge wesentlich erhöht werden (90%). Molare Leitfähigkeit in Aceton: $0.22 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$. 11 löst sich gut in polaren organischen, weniger gut in unpolaren Lösungsmitteln.

b) 200 mg (0.21 mmol) 12 und 160 mg (0.21 mmol) [P-n-Bu₃PdCl₂]₂⁴²⁾ werden in 15 ml Chloroform 3d bei Raumtemp. gerührt. Die Lösung wird mit 2 ml Octan versetzt und 11 durch Vertreiben des Chloroforms im Stickstoffstrom ausgefällt und i. Hochvak. getrocknet. Ausb. 90%.

Bis(adeninato)dichlorobis(tributylphosphin)dipalladium(II) (12): 270 mg (2 mmol) Adenin und 115 mg (2 mmol) Kaliumhydroxid in 30 ml Methanol werden mit 760 mg (1 mmol) $[P-n-Bu_3PdCl_2]_2^{42}$ kurze Zeit bei Raumtemp. gerührt. Anschließend wird die klare Reaktionslösung 4 d bei -20° C aufbewahrt. Die anfallenden gelben Kristalle werden mit wenig Methanol gewaschen. Ausb. 50%. Zur Verbesserung der Ausbeute wird die Mutterlauge zur Trockene eingeengt und der Rückstand mit Wasser und Methanol gewaschen (Gesamtausb. 75%).

Bis(adeninato)(tributylphosphin)palladium(II) (13): 810 mg (6 mmol) Adenin und 340 mg (6 mmol) Kaliumhydroxid in 80 ml Methanol werden zusammen mit 760 mg (1 mmol) [P-n-Bu₃PdCl₂]₂⁴²⁾ bei Raumtemp. gerührt. Nach 24 h wird das Lösungsmittel i. Vak. entfernt, der schwach-gelbe Rückstand mehrmals mit Wasser gewaschen und i. Hochvak. getrocknet. Ausb. 70%.

(Adenosin)tetrachlorobis(tributylphosphin)dipalladium(II) (14): 800 mg (3 mmol) Adenosin und 380 mg (0.5 mmol) $[P-n-Bu_3PdCl_2]_2^{42}$ in 40 ml Äthylenglycol-monomethyläther werden bei Raumtemp. gerührt. Nach 48 h wird das Lösungsmittel bei 60°C i. Vak. entfernt und der Rückstand mit 30 ml Äther extrahiert. Nun wird die ätherische Lösung eingeengt und mit Pentan gefällt. Der gelbe Komplex wird 8 h i. Hochvak. getrocknet. Ausb. 90 %.

Bis(1,3,7,9-tetramethylxanthinium-8-yl)quecksilber(II)-perchlorat (15): 2.0 g (6.5 mmol) 1,3,7,9-Tetramethylxanthinium-perchlorat⁴³⁾ und 1.0 g (3.15 mmol) Quecksilber(II)-acetat werden in 5 ml DMSO auf 80°C erhitzt (vgl. l. c. ³⁰). Nach 15 min wird das Lösungsmittel vollständig i. Vak. abgezogen und der Rückstand aus wenig heißem Wasser umkristallisiert. Farblose Nadeln; Ausb. 40%.

43) H. Bredereck, G. Kupsch und H. Wieland, Chem. Ber. 92, 566 (1959).

[299/75]